Laboratory Automation
In Clinical Pathology:

Making the right choices
For your laboratory

William Neeley, MD
Medical Director
Detroit Medical Center
University Laboratories

© College of American Pathologists 2004. Materials are used with the permission of William Neeley, MD, FCAP
Current Laboratory Challenges

– Most labs operate in 1980 mode
– Technical staff—average age 47
– Decreasing reimbursement--capitation
– Paradox—more computers—fewer with computer knowledge—IT Depts
– Most are unfamiliar with modern manufacturing methods
• Incredible Opportunities
 – Potential to utilize techniques from other industries
 – Adapt & apply modern (Lean) manufacturing methods
 – Develop and apply new ideas and concepts
 – Reduce fixed & variable Costs
 – Expand services to new markets
Achieving High Performance

- Flow & Real-time analyses
- Systems Integration
• Lean Manufacturing Principles
 – Do workflow analysis
 – Study & question every motion
 – Revise and clean up operation
 – Reduce or eliminate unproductive sample handling
 – Be willing to change the system
Flow & Real-Time Analyses

- Processing Area
- High Volume & STAT
- Medium Volume
- Low Volume
- Aliquoting
- Storage

Distance Traveled

Volume
• Lab Automation
 – Total Lab Automation vs Modules
 – Cost & ROI
 – Ability/Inability to handle STATS
 – Tube size limitations
 – Be aware of hidden costs/motions
 – Expensive items—centrif & aliquoters
• Lab Automation
 – Instrument vendor vs independent LAS vendor
 – LIS costs
 – Renovation costs
 – Bundle costs with instrumentation
• Pre-Analytical

- Ordering tests via Internet
- Sample Processing
- Aliquot samples???
- Deliver samples to work areas
- Automation decreases time & errors
Direct Track Sampling

Start

950 950 950 250 250 Architect Architect

End Aliquot

SMS-Immulite 2000* SMS-Immulite 2000* Olympus Olympus AxSYM AxSYM
• Analytical
 – Direct track sampling
 – Stability & long term calibrations
 – Read bar codes
 – Large menu
 – Disposable tips
• Post-Analytical
 – Think beyond autoverification
 – Post-Analytical Intelligent Systems
 – Handle complex algorithms
 – Low labor requirements to operate
 – Reduce apprenticeship requirements
• Post-Analytical
 – “Middleware”
 – Provided by several vendors
 – Superior to “Autoverification, 1st Gen”
 – Positioned between LIS and instruments
 – Excellent backup in case of LIS failure
• Major Automation Vendors
 – Bayer--SKCL
 – Beckman-Coulter--IDS
 – Lab Interlink--Labotix
 – Roche--Hitachi
 – OCD-Thermo
• Bayer
 – Old SKCL System
 – Bundled with their instruments
 – Fast, carrier based
 – Uses direct track sampling
 – Chemistry, immunoochem & hematology
• Beckman-Coulter
 – One of oldest
 – Bundled with their instruments
 – Slower, carrier based
 – Infrequent direct track sampling
 – Chemistry, immunochem & hematology
 – Tube size limitations
- Lab Interlink-Labotix
 - One of oldest, bankruptcy & sold
 - Uses many different instruments
 - Slower, boat based
 - Uses direct track sampling
 - Chemistry, immunochem & hematology
• Roche-Hitachi
 – One of oldest
 – Bundled with their instruments
 – Slower, rack based, not STAT friendly
 – Large sorter used up front
 – Chemistry, immunochem & hematology
 – Limited tube sizes
• OCD-Thermo
 – One of the newest
 – Bundled with their instruments
 – Carrier based
 – Cost is uncertain
 – Chemistry, immunochem & hematology
 – Limited tube sizes
• Focus on the following items:
 – Ability to handle STATS
 – Direct track sampling
 – Handle multiple tube sizes
 – Low cost
 – Efficient designs
 – LIS Vendor
The Modern Laboratory

Lab Automation

Visit Sites
- Do your own homework
- Visit many sites
- Think about the process
- Use common sense

Develop Clear Vision
- Vendor is not best source of information
- Work with lab to develop detailed plan to meet your specific needs

Do your own financial analysis
- Cost justify each major component
- ROI is the big lie
- Do not let the vendor do your financial analysis

Conclusions
- The rewards for good choices are great
- Automation is the way of the future
- Most systems take 20 months to complete

Conclusions & Comments