Using Probing Questions when Performing an Inspection

Asking a probing question is a way for the inspector to establish a dialogue with the laboratory being inspected, and often leads to a beneficial discussion of the laboratory processes. The inspector must assess “how” a laboratory complies with the intention of a checklist section, such as quality control or proficiency testing, and should avoid simply asking the checklist questions verbatim one after the other in a linear fashion. That technique often leads to “yes” or “no” answers that yield limited amounts of information.

Probing questions are not meant to replace or be used instead of the inspection checklist(s). Rather, probing questions can be used as a tool to elicit a large amount of general information concerning an area of laboratory practice. One would ask a probing question initially, then proceed to ask the individual checklist items concerning that topic to get more specific information.

What is a Probing Question?
- A probing question is a question that elicits a large amount of general information concerning an area of laboratory practice.

What is an Example of a Probing Question?
- “How do you ensure that all testing personnel perform proficiency testing?”

When Do I Use Probing Questions?
- Experienced inspectors use probing questions as a lead-in to a major topic or group of checklist requirements, such as quality control.
- Ask a probing question initially and then proceed to ask individual checklist items concerning that topic to get more specific information.

Why Use Probing Questions?
- Probing questions are efficient and establish an open-ended dialogue that may answer 5-10 checklist questions at one time.
- Probing questions eliminate the need to ask individual checklist questions in a linear fashion.

Do Probing Questions Replace Asking the Checklist Questions?
- No. They are used in addition to the checklist.

How Do Probing Questions Differ from Checklist Questions?
- Checklists contain very specific questions and are used as a recording tool.
- Probing questions allow the inspector to get a general idea of compliance, and may point to individual checklist questions that should be focused on.
USING PROBING QUESTIONS AS AN INSPECTION TECHNIQUE

<table>
<thead>
<tr>
<th>Question</th>
<th>Reason for asking the question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficiency Testing</td>
<td>Asking this group of questions may aid the inspector in determining how the laboratory’s proficiency testing program functions and how proficiency samples are handled.</td>
</tr>
<tr>
<td>1. Please explain the Proficiency Testing Program for the laboratory.</td>
<td></td>
</tr>
<tr>
<td>2. How does the laboratory ensure that all members of the staff perform proficiency testing?</td>
<td></td>
</tr>
<tr>
<td>3. How does the laboratory handle proficiency testing samples?</td>
<td></td>
</tr>
<tr>
<td>Alternate Proficiency Testing</td>
<td>Asking this group of questions may result in information about the process the laboratory utilizes when commercially provided PT material is not available.</td>
</tr>
<tr>
<td>4. What is done if you are testing an analyte that does not have commercially available proficiency testing material?</td>
<td></td>
</tr>
<tr>
<td>5. How often is this system of alternate PT utilized, and who is responsible?</td>
<td></td>
</tr>
<tr>
<td>Quality Control</td>
<td>Posing this group of questions may allow for the assessment of the laboratory’s quality control program, including the bench technologist’s role, identifying out of range controls and any corrective action for out of range controls.</td>
</tr>
<tr>
<td>6. How is the bench technologist involved in the QC program for the laboratory?</td>
<td></td>
</tr>
<tr>
<td>7. How do you know your QC results are within range?</td>
<td></td>
</tr>
<tr>
<td>8. Please explain your normal procedure for what is done when QC results are out of range.</td>
<td></td>
</tr>
<tr>
<td>Specimen Collection and Accessioning</td>
<td>Using this group of questions may reveal how the laboratory performs specimen collection and how patients are identified before collection. This may also help the inspector assess whether the requisition and accessioning systems are adequate and determine if an acceptable process for processing specimens sent to another laboratory has been successfully developed.</td>
</tr>
<tr>
<td>9. Please explain the procedure for performing venipunctures.</td>
<td></td>
</tr>
<tr>
<td>10. How are both inpatients and outpatients identified before performing the venipuncture?</td>
<td></td>
</tr>
<tr>
<td>11. How are “send outs” handled?</td>
<td></td>
</tr>
<tr>
<td>12. How do you know what tests the physician orders and how the specimens are accessioned?</td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td>Posing this group of questions may help the inspector determine the safety processes of the laboratory. This may lead to a discussion of the Chemical Hygiene Plan, needle safety, and location of safety equipment, and may aid in determining training and persons responsible for the safety program.</td>
</tr>
<tr>
<td>13. What would you do if you spilled [Name a chemical]?</td>
<td></td>
</tr>
<tr>
<td>14. In the event of an emergency evacuation what are your responsibilities?</td>
<td></td>
</tr>
<tr>
<td>15. When is it acceptable for you to recap needles?</td>
<td></td>
</tr>
<tr>
<td>16. Where are your fire extinguishers, alarms, and emergency eye wash stations located?</td>
<td></td>
</tr>
</tbody>
</table>
17. Where are the MSDS located?
18. What would you do if a mercury thermometer broke?
19. What would you do if you had a needle-stick or splashed blood on yourself?
20. Who is the Laboratory Safety Officer? What are his/her responsibilities?
21. Please describe the Safety training program, including hazard communication, OSHA Bloodborne Pathogens, etc.

Analytic Measurement Range
22. How do you verify the analytic measurement range for *(name an analyte)* and how often is this performed?
23. What do you do if a patient result is obtained that exceeds the analytic measurement range?
24. What would you do if a patient result were below the analytic measurement range?

Calibration and Calibration Verification
25. Please explain how calibration verification is performed for *(Name a test)*.
26. What are the criteria the laboratory uses to calibrate or recalibrate a test?
27. What is the calibration procedure for *(Name a test)*?
28. How do you know when a test on this particular analyzer *(Choose an instrument)* requires recalibration and where do you find this information?

Error Detection and Correction
29. How does the laboratory find and correct clerical and analytical errors?
30. What is the bench technologist’s responsibility for finding and correcting clerical and analytical errors?
31. What is your criterion for correcting a WBC if nucleated red blood cells are present?
32. How does the laboratory prevent the reporting of spurious CBC instrument results and what mechanisms are in place to prevent inaccurate results from being reported?

Quality Improvement
33. Please explain the QI activities of the laboratory and what is done with the data once it is collected.

Asking this group of questions may help the inspector determine how the analytic measurement range is verified and the frequency of this testing. This may also aid the inspector in determining how the analytic measurement range is utilized during patient testing.

Inquiring with this group of questions may help the inspector determine frequency of calibrations and calibration verifications as well as the procedures utilized to perform each function.

Posing this group of questions may help the inspector assess the processes being used to monitor, find and correct clerical and analytic errors. They may also help to determine the responsibilities of the supervisors and bench technologists in this process.

Asking this group of questions can aid in the assessment of the QI activities of the laboratory as well as determining if the indicators are useful and the plan is effective.
34. How does the bench technologist contribute to the laboratory QI plan?
35. How are Quality Improvement monitors determined?
36. How does the laboratory determine if improvement has been made and the QI plan is effective?

Laboratory Information System
37. If you are using an LIS, what are the criteria you use before releasing (approving) patient results?
38. How does the laboratory ensure that data are accurately transmitted from point of origin to final reporting?

General Technical Questions
39. How does the laboratory ensure that all staff members who are making morphologic observations for urine sediment, body fluid and blood cell differentials are consistent?
40. Who is responsible for procedure review and how often is this done?
41. What type of water is used for the laboratory’s testing procedures and what testing is performed on the water to ensure it is of proper quality?

Reagent Issues
42. How does the laboratory label new reagents?
43. How does the laboratory ensure that reagents are maintained at proper storage conditions?
44. How does the laboratory check new reagent lots against old reagent lots, and what kind of samples are used for this process?

Inquiring with this group of questions can aid the inspector in assessing processes used by the laboratory to ensure proper results are reported through the LIS.

Asking this group of questions may aid the inspector in determining how the laboratory manages general technical issues that can affect patient testing in the laboratory.

Posing his group of questions may aid the inspector in assessing how the laboratory labels reagents and ensures that they are stored at the proper conditions. This may also help in assessing how reagents are validated before being placed in service.