Protocol for the Examination of Specimens From Patients With Cancers of the Nasal Cavity and Paranasal Sinuses

Version: 4.2.0.0
Protocol Posting Date: June 2023
CAP Laboratory Accreditation Program Protocol Required Use Date: March 2024

The changes included in this current protocol version affect accreditation requirements. The new deadline for implementing this protocol version is reflected in the above accreditation date. For accreditation purposes, this protocol should be used for the following procedures AND tumor types:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resection</td>
<td>Includes specimens designated nasal cavity and paranasal sinuses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoma</td>
<td>Includes squamous cell carcinoma, sinonasal carcinomas including: sinonasal adenocarcinoma, sinonasal neuroendocrine carcinoma, etc., and minor salivary gland carcinoma</td>
</tr>
<tr>
<td>Mucosal Melanoma</td>
<td></td>
</tr>
</tbody>
</table>

This protocol is NOT required for accreditation purposes for the following:

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy</td>
</tr>
<tr>
<td>Primary resection specimen with no residual cancer (e.g., following neoadjuvant therapy)</td>
</tr>
<tr>
<td>Cytologic specimens</td>
</tr>
<tr>
<td>Squamous cell carcinoma in situ (Tis)</td>
</tr>
</tbody>
</table>

The following tumor types should NOT be reported using this protocol:

<table>
<thead>
<tr>
<th>Tumor Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olfactory Neuroblastoma</td>
</tr>
<tr>
<td>Sarcoma (consider the Soft Tissue protocol)</td>
</tr>
<tr>
<td>Lymphoma (consider the Hodgkin or non-Hodgkin Lymphoma protocols)</td>
</tr>
</tbody>
</table>

Authors

Raja R. Seethala, MD*; Justin A. Bishop, MD; William C. Faquin, MD, PhD; Shao Hui Huang, MD; Nora Katabi, MD; William Lydiatt, MD; Brian O’Sullivan, MB BCh; Snehal Patel, MD; Jason Pettus, MD; Lindsay Williams, MD.

With guidance from the CAP Cancer and CAP Pathology Electronic Reporting Committees.

* Denotes primary author.
Accreditation Requirements
This protocol can be utilized for a variety of procedures and tumor types for clinical care purposes. For accreditation purposes, only the definitive primary cancer resection specimen is required to have the core and conditional data elements reported in a synoptic format.

- **Core data elements** are required in reports to adequately describe appropriate malignancies. For accreditation purposes, essential data elements must be reported in all instances, even if the response is “not applicable” or “cannot be determined.”
- **Conditional data elements** are only required to be reported if applicable as delineated in the protocol. For instance, the total number of lymph nodes examined must be reported, but only if nodes are present in the specimen.
- **Optional data elements** are identified with “+” and although not required for CAP accreditation purposes, may be considered for reporting as determined by local practice standards.

The use of this protocol is not required for recurrent tumors or for metastatic tumors that are resected at a different time than the primary tumor. Use of this protocol is also not required for pathology reviews performed at a second institution (ie, secondary consultation, second opinion, or review of outside case at second institution).

Synoptic Reporting
All core and conditionally required data elements outlined on the surgical case summary from this cancer protocol must be displayed in synoptic report format. Synoptic format is defined as:

- **Data element: followed by its answer (response), outline format without the paired Data element:** Response format is NOT considered synoptic.
- The data element should be represented in the report as it is listed in the case summary. The response for any data element may be modified from those listed in the case summary, including “Cannot be determined” if appropriate.
- Each diagnostic parameter pair (Data element: Response) is listed on a separate line or in a tabular format to achieve visual separation. The following exceptions are allowed to be listed on one line:
 - Anatomic site or specimen, laterality, and procedure
 - Pathologic Stage Classification (pTNM) elements
 - Negative margins, as long as all negative margins are specifically enumerated where applicable
- The synoptic portion of the report can appear in the diagnosis section of the pathology report, at the end of the report or in a separate section, but all Data element: Responses must be listed together in one location

Organizations and pathologists may choose to list the required elements in any order, use additional methods in order to enhance or achieve visual separation, or add optional items within the synoptic report. The report may have required elements in a summary format elsewhere in the report IN ADDITION TO but not as replacement for the synoptic report ie, all required elements must be in the synoptic portion of the report in the format defined above.
Summary of Changes

v 4.2.0.0

- WHO 5th edition update to content and Explanatory Notes B, C, and F
- pTNM classification update to content and Explanatory Note G
- LVI update from “Lymphovascular Invasion” to “Lymphatic and/or Vascular Invasion”
- Cover page update to Tumor Type Description and Squamous cell carcinoma in-situ (Tis) is not required for accreditation
Reporting Template

Protocol Posting Date: June 2023
Select a single response unless otherwise indicated.

CASE SUMMARY: (NASAL CAVITY AND PARANASAL SINUSES)
Standard(s): AJCC-UICC 8

SPECIMEN

Procedure (select all that apply)
___ Excision
___ Partial maxillectomy
___ Radical maxillectomy
___ Neck (lymph node) dissection (specify type): _________________
___ Other (specify): _________________
___ Not specified

TUMOR

Tumor Focality
___ Unifocal
___ Multifocal: _________________
___ Cannot be determined: _________________

Multiple Primary Sites (e.g., nasal cavity and paranasal sinus, maxillary)
___ Not applicable (no additional primary site(s) present)
___ Present: _________________

Please complete a separate checklist for each primary site

Tumor Site (Note A) (select all that apply)
___ Nasal septum: _________________
___ Nasal floor: _________________
___ Nasal lateral wall: _________________
___ Nasal vestibule: _________________
___ Nasal cavity, not otherwise specified: _________________
___ Paranasal sinus(es), maxillary: _________________
___ Paranasal sinus(es), ethmoid: _________________
___ Paranasal sinus(es), frontal: _________________
___ Paranasal sinus(es), sphenoid: _________________
___ Other (specify): _________________
___ Not specified

Tumor Laterality (select all that apply)
___ Right
___ Left
___ Midline
___ Not specified

Tumor Size
___ Greatest dimension in Centimeters (cm): _________________ cm
+ Additional Dimension in Centimeters (cm): ____ x ____ cm
___ Cannot be determined (explain): _________________

Histologic Type (Note B)

Non-salivary type carcinomas
___ Squamous cell carcinoma and subtypes
 Select all that apply
 ___ Squamous cell carcinoma, keratinizing
 ___ Squamous cell carcinoma, nonkeratinizing
 ___ Squamous cell carcinoma, nonkeratinizing, transcriptionally active high-risk HPV-associated
 ___ Squamous cell carcinoma, nonkeratinizing, DEK::AFF2 translocated
 ___ Adenosquamous carcinoma
 ___ Basaloid squamous cell carcinoma
 ___ Papillary squamous cell carcinoma
 ___ Spindle cell squamous cell carcinoma
 ___ Verrucous carcinoma
 ___ Other subtype (specify): _________________
___ NUT carcinoma
___ SWI / SNF complex-deficient sinonasal carcinoma
___ Sinonasal lymphoepithelial carcinoma
___ Sinonasal undifferentiated carcinoma (SNUC), IDH mutated
___ Sinonasal undifferentiated carcinoma (SNUC), IDH wild type
___ Sinonasal undifferentiated carcinoma (SNUC), IDH status unknown
___ Teratocarcinosarcoma
___ HPV-associated multiphenotypic sinonasal carcinoma
 ___ Intestinal adenocarcinoma, papillary pattern
 ___ Intestinal adenocarcinoma, colonic pattern
 ___ Intestinal adenocarcinoma, solid pattern
 ___ Intestinal adenocarcinoma, mucinous pattern
 ___ Intestinal adenocarcinoma, mixed pattern
___ Non-intestinal (seromucinous) adenocarcinoma

Carcinomas of minor salivary glands
___ Carcinoma ex pleomorphic adenoma

Architectural Type

Required in addition to carcinoma type
___ Carcinoma ex pleomorphic adenoma, minimally invasive
___ Carcinoma ex pleomorphic adenoma, invasive
___ Carcinoma ex pleomorphic adenoma, intracapsular (noninvasive)
___ Carcinoma ex pleomorphic adenoma, extent cannot be determined

Malignant Component Histologic Type(s) (select all that apply)
___ Intraductal pattern
___ Salivary duct carcinoma
___ Epithelial-myoepithelial carcinoma
___ Myoepithelial carcinoma
___ Carcinosarcoma (sarcomatoid carcinoma)
___ Other (specify): ____________________
___ Mucoepidermoid carcinoma
___ Adenoid cystic carcinoma tubular / cribriform
If multiple patterns are present, select the predominant pattern unless the solid pattern is greater than 30%, in which case the user should select the solid pattern.
___ Adenoid cystic carcinoma, solid#

+Percentage of Solid Component for Adenoid Cystic Carcinoma
___ Specify percentage: ________________%
___ Other (specify): ____________________
___ Cannot be determined
___ Acinic cell carcinoma
___ Secretory carcinoma
___ Polymorphous adenocarcinoma, conventional
___ Polymorphous adenocarcinoma, cribriform subtype

+Percentage of Papillary Component for Polymorphous Adenocarcinoma
___ Specify percentage: ________________%
___ Other (specify): ____________________
___ Cannot be determined

+Percentage of Cribriform Component for Polymorphous Adenocarcinoma
___ Specify percentage: ________________%
___ Other (specify): ____________________
___ Cannot be determined
___ Salivary duct carcinoma
___ Epithelial-myoepithelial carcinoma
___ Hyalinizing clear cell carcinoma
___ Microsecretory adenocarcinoma
___ Intraductal carcinoma (specify subtype): __________________
___ Basal cell adenocarcinoma
___ Carcinosarcoma
___ Mucinous adenocarcinoma, not otherwise specified
___ Mucinous adenocarcinoma, intraductal papillary mucinous neoplasia subtype
___ Mucinous adenocarcinoma, colloid / signet ring subtype
___ Sclerosing microcystic adenocarcinoma
___ Lymphoepithelial carcinoma
___ Myoepithelial carcinoma
___ Sebaceous adenocarcinoma
___ Sialoblastoma

Neuroendocrine
___ Neuroendocrine tumor, grade 1
___ Neuroendocrine tumor, grade 2
___ Neuroendocrine tumor, grade 3
___ Neuroendocrine carcinoma, small cell type
___ Neuroendocrine carcinoma, large cell type
___ Combined (or composite) small cell carcinoma, neuroendocrine type
Type of Combined Histology# (select all that apply)
Please note that the user must select at least one neuroendocrine type and at least one carcinoma type from the list below.
 ___ Squamous cell carcinoma: ______________________
 ___ Adenocarcinoma: ______________________
 ___ Neuroendocrine carcinoma, small cell type
 ___ Neuroendocrine carcinoma, large cell type
 ___ Other (specify): ______________________

Mucosal melanoma
 ___ Mucosal melanoma

Other
 ___ Other histologic type not listed (specify): ______________________
 ___ Carcinoma, type cannot be determined: ______________________

+Histologic Type Comment: ______________________

Histologic Grade# (Note C)
Required for non-salivary, non-neuroendocrine carcinomas
 ___ Not applicable
 ___ G1, well differentiated
 ___ G2, moderately differentiated
 ___ G3, poorly differentiated
 ___ Other (specify): ______________________
 ___ GX, cannot be assessed: ______________________

Grade / Intrinsic Biologic Potential#
Required for salivary carcinomas
 ___ Not Applicable
 ___ Low
 ___ Intermediate
 ___ High / High-grade transformation
 ___ Cannot be assessed: ______________________

+Tumor Extent (specify): ______________________

Lymphatic and / or Vascular Invasion
 ___ Not Identified
 ___ Present
 ___ Cannot be determined: ______________________

Perineural Invasion (Note D)
 ___ Not identified
 ___ Present

+Extent / Type of Perineural Invasion#
Select the most aggressive type
 ___ Intratumoral
 ___ Extratumoral
 ___ Intraneural

+Specify Diameter of Involved Nerve in Millimeters (mm): ______________________ mm
MARGINS (Note E)

Margin Status for Invasive Tumor
___ All margins negative for invasive tumor

Distance from Invasive Tumor to Closest Margin
Specify in Millimeters (mm)
___ Exact distance: _________________ mm
___ Greater than: _________________ mm
___ Less than 1 mm
___ Other (specify): _________________
___ Cannot be determined:

Closest Margin(s) to Invasive Tumor (use orientation when provided)
___ Specify location(s) of closest margin(s): _________________
___ Cannot be determined

+Other Close Margin(s) to Invasive Tumor
___ Specify location(s) and distance(s) of other close margin(s): _________________
___ Cannot be determined

___ Invasive tumor present at margin

Margin(s) Involved by Invasive Tumor (use orientation when provided)
___ Specify involved margin(s): _________________
___ Cannot be determined
___ Other (specify): _________________
___ Cannot be determined (explain): _________________

Margin Status for Noninvasive Tumor (High-grade Dysplasia)
Applicable only to squamous cell carcinoma and histologic subtypes and required only if margins are uninvolved by invasive carcinoma.
___ Not applicable
___ All margins negative for high-grade dysplasia / in situ disease

+Distance from Noninvasive Tumor to Closest Margin
Specify in Millimeters (mm)
___ Exact distance: _________________ mm
___ Greater than: _________________ mm
___ Less than 1 mm
___ Other (specify): _________________
___ Cannot be determined:

+Closest Margin(s) to Noninvasive Tumor (use orientation when provided)
___ Specify location(s) of closest margin(s): _________________
___ Cannot be determined
___ High-grade dysplasia / in situ disease present at margin

Margin(s) Involved by Noninvasive Tumor (use orientation when provided)
___ Specify involved margin(s): _________________
___ Cannot be determined
___ Other (specify): ___________________
___ Cannot be determined (explain): ___________________

+Margin Comment: ___________________

REGIONAL LYMPH NODES (Note F)

Regional Lymph Node Status
___ Not applicable (no regional lymph nodes submitted or found)
___ Regional lymph nodes present
___ All regional lymph nodes negative for tumor
___ Tumor present in regional lymph node(s)

Number of Lymph Nodes with Tumor
___ Exact number (specify): ___________________
___ At least (specify): ___________________
___ Other (specify): ___________________
___ Cannot be determined

Laterality of Lymph Node(s) with Tumor (not applicable for mucosal melanoma)
___ Not applicable
___ Ipsilateral (including midline): ___________________
___ Contralateral: ___________________
___ Bilateral: ___________________
___ Cannot be determined: ___________________

+Nodal Site(s) with Tumor (select all that apply)
___ Intra / periparotid
___ Level I
___ Level II
___ Level III
___ Level IV
___ Level V
___ Other (specify): ___________________
___ Cannot be determined: ___________________

Size of Largest Nodal Metastatic Deposit (not applicable for mucosal melanoma)
Specify in Centimeters (cm)
___ Not applicable
___ Exact size: ___________________ cm
___ At least: ___________________ cm
___ Greater than: ___________________ cm
___ Less than: ___________________ cm
___ Other (specify): ___________________
___ Cannot be determined: ___________________

Extranodal Extension (ENE) (not applicable for mucosal melanoma)
___ Not applicable
___ Not identified
___ Present
+Distance of ENE from Lymph Node Capsule

Specify in Millimeters (mm)

___ Exact distance: _________________ mm
___ Greater than 2 mm (macroscopic ENE)
___ Less than or equal to 2 mm (microscopic ENE)
___ Less than 1 mm
___ Other (specify): _________________
___ Cannot be determined
___ Cannot be determined: _________________
___ Other (specify): _________________
___ Cannot be determined (explain): _________________

Number of Lymph Nodes Examined

___ Exact number (specify): _________________
___ At least (specify): _________________
___ Other (specify): _________________
___ Cannot be determined

+Regional Lymph Node Comment: _________________

DISTANT METASTASIS

Distant Site(s) Involved, if applicable (select all that apply)

___ Not applicable
___ Lung: _________________
___ Bone: _________________
___ Brain: _________________
___ Liver: _________________
___ Other (specify): _________________
___ Cannot be determined: _________________

pTNM CLASSIFICATION (AJCC 8th Edition) (Note G)

Reporting of pT, pN, and (when applicable) pM categories is based on information available to the pathologist at the time the report is issued. As per the AJCC (Chapter 1, 8th Ed.) it is the managing physician’s responsibility to establish the final pathologic stage based upon all pertinent information, including but potentially not limited to this pathology report.

Modified Classification (required only if applicable) (select all that apply)

___ Not applicable
___ y (post-neoadjuvant therapy)
___ r (recurrence)

pTNM Classification

___ For all carcinomas

pT Category

___ pT not assigned (cannot be determined based on available pathological information)

For the Maxillary Sinus

___ pTis: Carcinoma "in situ"
___ pT1: Tumor limited to the maxillary sinus mucosa with no erosion or destruction of bone
___ pT2: Tumor causing bone erosion or destruction including extension into the hard palate and / or middle nasal meatus, except extension to posterior wall of maxillary sinus and pterygoid plates
___ pT3: Tumor invades any of the following: bone of the posterior wall of maxillary sinus, subcutaneous tissues, floor or medial wall of orbit, pterygoid fossa, ethmoid sinuses

pT4: Moderately advanced or very advanced local disease
___ pT4a: Moderately advanced local disease. Tumor invades anterior orbital contents, skin of cheek, pterygoid plates, infratemporal fossa, cribiform plate, sphenoid or frontal sinuses
___ pT4b: Very advanced local disease. Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than maxillary division of trigeminal nerve (V2), nasopharynx, or clivus
___ pT4 (subcategory cannot be determined)

For the Nasal Cavity and Ethmoid Sinus
___ pTis: Carcinoma *in situ*
___ pT1: Tumor restricted to any one subsite, with or without bony invasion
___ pT2: Tumor invading two subsites in a single region or extending to involve an adjacent region within the nasoethmoidal complex, with or without bony invasion
___ pT3: Tumor extends to invade the medial wall or floor of the orbit, maxillary sinus, palate, or cribiform plate

pT4: Moderately advanced or very advanced local disease
___ pT4a: Moderately advanced local disease. Tumor invades any of the following: anterior orbital contents, skin of nose or cheek, minimal extension to anterior cranial fossa, pterygoid plates, sphenoid or frontal sinuses
___ pT4b: Very advanced local disease. Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than maxillary division of trigeminal nerve (V2), nasopharynx, or clivus
___ pT4 (subcategory cannot be determined)

T Suffix (required only if applicable)
___ Not applicable
___ (m) multiple primary synchronous tumors in a single organ

pN Category# (Note F)
___ pN not assigned (no nodes submitted or found)
___ pN not assigned (cannot be determined based on available pathological information)

Midline nodes are considered ipsilateral nodes.
Pathological ENE should be recorded as ENE(−) or ENE(+).
Measurement of the metastatic focus in the lymph nodes is based on the largest metastatic deposit size, which may include matted or fused lymph nodes.
___ pN0: No regional lymph node metastasis
___ pN1: Metastasis in a single ipsilateral lymph node, 3 cm or smaller in greatest dimension and ENE(−)
pN2: Metastasis in a single ipsilateral node larger than 3 cm but not larger than 6 cm in greatest dimension and ENE(−); or metastases in multiple ipsilateral lymph nodes, none larger than 6 cm in greatest dimension and ENE(−); or in bilateral or contralateral lymph node(s), none larger than 6 cm in greatest dimension and ENE(−)
___ pN2a: Metastasis in single ipsilateral node 3 cm or less in greatest dimension and ENE(−); or a single ipsilateral node larger than 3 cm but not larger than 6 cm in greatest dimension and ENE(−)
___ pN2b: Metastases in multiple ipsilateral nodes, none larger than 6 cm in greatest dimension and ENE(−)
___ pN2c: Metastases in bilateral or contralateral lymph node(s), none larger than 6 cm in greatest dimension and ENE(−)
___ pN2 (subcategory cannot be determined)

pN3: Metastases in a lymph node larger than 6 cm in greatest dimension and ENE(-); or in a single ipsilateral node larger than 3 cm in greatest dimension and ENE(+); or multiple ipsilateral, contralateral, or bilateral nodes, any with ENE(+); or a single contralateral node of any size and ENE(+)

___ pN3a: Metastasis in a lymph node larger than 6 cm in greatest dimension and ENE(-)

___ pN3b: Metastasis in a single ipsilateral node larger than 3 cm in greatest dimension and ENE(+); or multiple ipsilateral, contralateral or bilateral nodes any with ENE(+); or a single contralateral node of any size and ENE(+)

___ pN3 (subcategory cannot be determined)

pM Category (required only if confirmed pathologically)

___ Not applicable - pM cannot be determined from the submitted specimen(s)

___ pM1: Distant metastasis

___ For mucosal melanoma

pT Category

___ pT3: Tumors limited to the mucosa and immediately underlying soft tissue, regardless of thickness or greatest dimension; for example, polypoid nasal disease, pigmented or nonpigmented lesions of the oral cavity, pharynx, or larynx

pT4: Moderately advanced or very advanced disease

___ pT4a: Moderately advanced disease. Tumor involving deep soft tissue, cartilage, bone, or overlying skin

___ pT4b: Very advanced disease. Tumor involving brain, dura, skull base, lower cranial nerves (IX, X, XI, XII), masticator space, carotid artery, prevertebral space, or mediastinal structures

___ pT4 (subcategory cannot be determined)

T Suffix (required only if applicable)

___ Not applicable

___ (m) multiple primary synchronous tumors in a single organ

pN Category

___ pN not assigned (no nodes submitted or found)

___ pN not assigned (cannot be determined based on available pathological information)

___ pN0: No regional lymph node metastasis

___ pN1: Regional lymph node metastases present

pM Category (required only if confirmed pathologically)

___ Not applicable - pM cannot be determined from the submitted specimen(s)

___ pM1: Distant metastasis present

ADDITIONAL FINDINGS (Note H)

+Additional Findings (select all that apply)

___ None identified

___ Carcinoma in situ

___ Epithelial dysplasia (specify type): _________________

___ Sinonasal papilloma (specify type): _________________

___ Inflammation (specify type): _________________

___ Squamous metaplasia

___ Epithelial hyperplasia

___ Colonization, fungal

___ Colonization, bacterial
SPECIAL STUDIES
For reporting molecular testing and other cancer biomarker testing results, the CAP Head and Neck Biomarker Template should be used. Pending biomarker studies should be listed in the Comments section of this report.

COMMENTS
Comment(s): ___________________
Explanatory Notes

A. Anatomic Sites and Subsites for the Nasal Cavity and Paranasal Sinuses

The nasal cavity is divided in the midline to right and left halves by the septum; each half opens on the face via the nares or nostrils and communicates behind with the nasopharynx through the posterior nasal apertures or the choanae. The nasal cavity is divided into 4 subsites including the septum, floor, lateral wall, and vestibule. The paranasal sinuses represent a grouping of 4 paired sinuses including the maxillary sinuses, ethmoid sinuses, frontal sinuses, and sphenoid sinuses. The nasoethmoidal complex is divided into 2 sites including the nasal cavity and the ethmoid sinuses.

Cancers of the maxillary sinuses are the most common sinonasal malignancies followed by cancers of the ethmoid sinuses, which are much less common.\(^1\) Cancers of the frontal and sphenoid sinuses are rare. When considering the nasal cavity and paranasal sinuses, 60% of malignant neoplasms originate from the maxillary sinus, 20% to 30% from the nasal cavity, 10% to 15% from the ethmoid sinus, and 1% from the sphenoid and frontal sinuses.\(^2\) When only considering the paranasal sinuses, 77% of malignant neoplasms originate from the maxillary sinus, 22% from the ethmoid sinus, and 1% from the sphenoid and frontal sinuses.\(^2\)

The location as well as the extent of the mucosal lesion in the maxillary sinus has prognostic importance. Ohngren's line, connecting the medial canthus of the eye to the angle of the mandible, divides the maxillary sinus into an anteroinferior portion (infrastructure) and superioposterior portion (suprastructure) structures. Carcinomas of the infrastructure are associated with a good prognosis; carcinomas of the suprastructure are associated with a poor prognosis. The poorer prognosis with carcinomas of the suprastructure reflects early access of these tumors to critical structures, including the eye, skull base, pterygoids, and infratemporal fossa.\(^1\)

References

B. Histologic Type
A modification of the WHO classification of carcinomas of the nasal cavity and paranasal sinuses is shown below to include subtypes of squamous cell carcinoma seen at all head and neck sites and key molecular subtypes. This protocol applies only to carcinomas and melanomas and does not apply to lymphomas, sarcomas or neuroectodermal tumors (e.g., olfactory neuroblastoma, primitive neuroectodermal tumor [PNET], others).

Nasal Cavity and Paranasal Sinuses
- Keratinizing squamous cell carcinoma
- Nonkeratinizing squamous cell carcinoma
- High risk
 - HPV associated
 - DEK::AFF2 translocated
- NUT carcinoma
- SWI/SNF complex deficient carcinoma
- Adenosquamous carcinoma
- Basaloid squamous cell carcinoma
- Papillary squamous cell carcinoma
- Spindle cell squamous cell carcinoma
- Verrucous carcinoma
- Sinonasal lymphoepithelial carcinoma
- Sinonasal undifferentiated carcinoma (substratified by IDH2 mutation status)
- Teratocarcinosarcoma
- HPV-associated multiphenotypic sinonasal carcinoma

Adenocarcinoma
- Intestinal-type
- Non-intestinal type

Carcinomas of Minor Salivary Glands
- Mucoepidermoid carcinoma
- Adenoid cystic carcinoma
- Acinic cell carcinoma
- Secretory carcinoma
- Polymorphous adenocarcinoma, conventional (classic) and cribriform subtypes
Salivary duct carcinoma
Epithelial-myoepithelial carcinoma
Hyalinizing clear cell carcinoma
Microsecretory adenocarcinoma
Intraductal carcinoma (with subtypes)
Basal cell adenocarcinoma
Carcinosarcoma
Mucinous adenocarcinoma (with subtypes)
Sclerosing microcystic adenocarcinoma
Lymphoepithelial carcinoma
Myoepithelial carcinoma (malignant myoepithelioma)
Sebaceous adenocarcinoma
Squamous cell carcinoma
Sialoblastoma
Carcinoma, not otherwise specified

Neuroendocrine Carcinomas
The recommended histologic classification for neuroendocrine neoplasms has been standardized across all head and neck sites. The entities relevant to this protocol are listed below:
- Neuroendocrine tumor, grade 1-3
- Neuroendocrine carcinoma, small cell type
- Neuroendocrine carcinoma, large cell type

Additionally, composite tumors with non-neuroendocrine CA components exist throughout the upper aerodigestive tract. The carcinoma component can then be captured in this protocol accordingly.

Mucosal Melanoma
Given the rarity of mucosal melanoma, grading, and subtyping are not required.

References

C. Histologic Grade
For histologic types of non-salivary carcinomas that are amenable to grading, three histologic grades are suggested, as shown below. For conventional squamous cell carcinoma, histologic grading as a whole does not perform well as a prognosticator. Nonetheless, it should be recorded when applicable, as it is a basic tumor characteristic. For sinonasal intestinal type adenocarcinomas, pattern-based grading is commonly
employed: papillary tumors can be considered grade I, colonic and mixed grade II, solid and mucinous grade III. Non-intestinal type (seromucinous) adenocarcinomas are graded intuitively into low, intermediate and high-grade tumors.

Selecting either the most prevalent grade or the highest grade for this synoptic protocol is acceptable. Some subtypes of squamous cell carcinoma (i.e., verrucous, basaloïd, etc.) have an intrinsic biologic potential. Newer subtypes with distinctive molecular alterations do not currently require grading as data are still emerging regarding biologic behavior.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Well differentiated</th>
<th>Moderately differentiated</th>
<th>Poorly differentiated</th>
<th>Cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The histologic (microscopic) grading of salivary gland carcinomas has been shown to be an independent predictor of behavior and plays a role in optimizing therapy. Further, there is often a positive correlation between histologic grade and clinical stage. However, most salivary gland carcinoma types have an intrinsic biologic behavior, and attempted application of a universal grading scheme is suboptimal given tumor specific nuances. Thus, a generic grading scheme is no longer recommended for salivary gland carcinomas.

However, within a given tumor type, grade remains an important prognostic parameter. Carcinoma types for which grading systems exist and are relevant are incorporated into histologic type. The classic categories that are still graded using three tier schemes include mucoepidermoid carcinoma, and carcinoma, not otherwise specified. While adenoid cystic carcinoma was historically stratified into three tiers, current classification no longer advocates for this. Additionally, several tumor types can at least be stratified into low and high grade. High grade transformation (historically designated as dedifferentiation) refers to the phenomenon of progression from a conventional, usually indolent phenotype, to a pleomorphic aggressive morphology.

As such carcinomas can alternatively be stratified by their risk for structural recurrence by a combination of category, subtype, and category-specific grade as in Table 1.

<table>
<thead>
<tr>
<th>Low Aggression</th>
<th>High Aggression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucoepidermoid carcinoma – Low grade</td>
<td>Mucoepidermoid carcinoma – High grade</td>
</tr>
<tr>
<td>Mucoepidermoid carcinoma – Intermediate grade*</td>
<td></td>
</tr>
<tr>
<td>Acinic cell carcinoma – Conventional</td>
<td>Acinic cell carcinoma – High grade/HGT</td>
</tr>
<tr>
<td>Secretory carcinoma - Conventional</td>
<td>Secretory carcinoma – High grade/HGT</td>
</tr>
<tr>
<td>Microsecretory adenocarcinoma – Usual</td>
<td>Microsecretory adenocarcinoma – High grade/HGT</td>
</tr>
<tr>
<td>Polymorphous adenocarcinoma – Low grade, conventional</td>
<td>Polymorphous adenocarcinoma – High grade/HGT</td>
</tr>
<tr>
<td>Polymorphous adenocarcinoma – Low & intermediate grade, cribriform**</td>
<td></td>
</tr>
<tr>
<td>Hyalinizing clear cell carcinoma – Conventional</td>
<td>Hyalinizing clear cell carcinoma – High grade/HGT</td>
</tr>
<tr>
<td>Basal cell adenocarcinoma – Conventional</td>
<td>Basal cell adenocarcinoma – High grade/HGT</td>
</tr>
</tbody>
</table>
Adenoid cystic carcinomas were historically stratified into three tiers based on tubular, cribriform, and solid (>30%) patterns respectively. However currently, while solid pattern remains an integral prognostic factor, no standard grading scheme is endorsed. The histologic grading of mucoepidermoid carcinoma includes a combination of growth pattern characteristics (e.g., cystic, solid, neurotropism) and cytomorphologic findings (e.g., anaplasia, mitoses, necrosis). Carcinomas, not otherwise specified, do not have a formalized grading scheme and are graded intuitively based on cytologic features. Polymorphous adenocarcinomas and intraductal carcinomas are to be graded as per current WHO recommendations. Polymorphous adenocarcinomas should be subtyped into conventional and cribriform types (i.e., cribriform adenocarcinoma of minor salivary gland). The latter is more frequently extrapalatal and locally aggressive. Along these lines, papillary components (>10%) and cribriform components (>30%) regardless of subtype have been shown to be prognostically relevant and these can be recorded optionally. Intraductal carcinomas can be subtyped and graded, as both influence biologic behavior. Additionally, two-tier grading schema have shown prognostic relevance for other tumor types such as myoepithelial carcinoma and acinic cell carcinoma. Low grade and high grade are generally separated by mitotic counts and/or necrosis.

The current protocol is thus structured to allow for provision of grade or biologic potential for almost every epithelial tumor type in at least a two-tier fashion as per Table 1. For instance, epithelial-myoepithelial carcinoma, basal cell adenocarcinoma, and hyalinizing clear cell carcinoma can be assigned a default low grade/biologic potential category. Conversely, salivary duct carcinoma and lymphoepithelial carcinoma can
be considered high grade/biologic potential category as a default. One key point is that adenoid cystic carcinoma should NEVER be assigned a low grade/biologic potential category. As this is one entity that does not fit into a standard risk of structural recurrence (i.e., discordant prevalence of local and regional aggression), this can be assigned N/A if non-solid and high grade if solid (>30%) or high grade transformed.

Carcinoma ex pleomorphic adenoma is subclassified by histologic type and/or grade and extent of invasion, the latter including minimally invasive, invasive, and intracapsular (noninvasive) cancers. Previously the cut-off for minimal invasion was designated as 1.5 mm; however, more recent studies have shown a favorable prognosis even with cut-offs of 4 mm to 6 mm. Thus, there is no agreement on an optimal cut-off. However, from a practical standpoint, the terms *intracapsular* and *minimally invasive* should only be applied to uninodular tumors (as opposed to carcinomas arising in multinodular recurrent pleomorphic adenomas) with a well-delineated interface for which the entire lesional border has been microscopically evaluated. Prognosis has been linked to degree of invasion with noninvasive and minimally invasive cancers apparently having a better prognosis than invasive cancers. Carcinosarcoma is a rare subtype morphology that while currently separated, appears to almost invariably arise in the setting of a precursor pleomorphic adenoma and should likely be regarded as a sarcomatoid carcinoma subtype ex pleomorphic adenoma.

Aside from pleomorphic adenoma, other precursor lesions, most notably intercalated duct lesion/adenoma, exist. Though biologically and diagnostically relevant, documentation of these precursors is currently optional (non-core) as there is limited literature on these.

The WHO 5th edition has standardized the terminology for head and neck neuroendocrine neoplasms across all subsites. Tumors previously designated as carcinoid and well-differentiated neuroendocrine carcinoma would now be considered grade 1 neuroendocrine tumors while atypical carcinoids/moderately-differentiated neuroendocrine carcinomas are now considered grade 2 neuroendocrine tumors. Grade 3 neuroendocrine tumor is a provisional category with no historical analogue. *It must be emphasized that this category in head and neck sites is provisional with no current evidence to support its use in head and neck sites.* Practically speaking, tumors that exceed the mitotic rate for grade 2 neuroendocrine tumors are usually more in keeping with neuroendocrine carcinomas (see below). Grading of neuroendocrine tumors is summarized in Table 2. Ki-67 proliferation indices are recommended for neuroendocrine tumors of head and neck, but are not required elements, and delineation of grade 1 and 2 at this site by proliferation index is not yet established.

<table>
<thead>
<tr>
<th>Neuroendocrine Tumor Grade</th>
<th>Mitoses per two mm²</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 2</td>
<td>Absent</td>
</tr>
<tr>
<td>2</td>
<td>2-10</td>
<td>Present</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuroendocrine Tumor Grade</th>
<th>Mitoses per two mm²</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Less than 2</td>
<td>Absent</td>
</tr>
<tr>
<td>2</td>
<td>2-10</td>
<td>Present</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Undefined</td>
</tr>
</tbody>
</table>

Neuroendocrine carcinoma, small cell types and large cell types on the other hand, have not changed much in terms of their designation and reflect poorly differentiated neuroendocrine malignancies that were previously labeled small cell and large cell neuroendocrine carcinomas respectively. These characteristically show necrosis and have mitotic counts that exceed 10 per two mm². While neuroendocrine tumors and carcinomas are defined by neuroendocrine marker expression (synaptophysin, chromogranin, and/or INSM-1), other tumor types at each head and neck subsite may express
these. Morphologic, other immunophenotypic, and molecular features would then supersede this neuroendocrine marker expression for classification.

References
16. Xu B, Aneja A, Ghossein R, Katabi N. Predictors of Outcome in the Phenotypic Spectrum of Polymorphous Low-grade Adenocarcinoma (PLGA) and Cribriform Adenocarcinoma of Salivary

D. Perineural Invasion

Traditionally, the presence of perineural invasion (neurotropism) is an important predictor of poor prognosis in head and neck cancer of virtually all sites. The presence of perineural invasion (neurotropism) in the primary cancer is associated with poor local disease control and regional control, as well as being associated with metastasis to regional lymph nodes. Further, perineural invasion is associated with decrease in disease-specific survival and overall survival. There is conflicting data relative to an association between the presence of perineural invasion and the development of distant metastasis, with some studies showing an increased association with distant metastasis, while other studies showing no correlation with distant metastasis. The relationship between perineural invasion and prognosis is independent of nerve diameter. Additionally, emerging evidence suggests that extratumoral perineural
invasion may be more prognostically relevant. Although perineural invasion of small unnamed nerves may not produce clinical symptoms, the reporting of perineural invasion includes nerves of all sizes including small peripheral nerves (i.e., less than 1 mm in diameter). Aside from the impact on prognosis, the presence of perineural invasion also guides therapy. Concurrent adjuvant chemoradiation therapy has been shown to improve outcomes in patients with perineural invasion (as well as in patients with extranodal extension and bone invasion). Given the significance relative to prognosis and treatment, perineural invasion is a required data element in the reporting of head and neck cancers.

References

E. Surgical Margins
The definition of a positive margin is somewhat controversial given the varied results from prior studies. This is made even more challenging and nebulous for sinonasal tumors, which are often received piecemeal with margins submitted separately. But for squamous cell carcinoma, data is essentially extrapolated from other sites. Here, overall, several studies support the definition of a positive margin to be invasive carcinoma or carcinoma in situ/high-grade dysplasia present at margins (microscopic cut-through of tumor). Furthermore, reporting of surgical margins should also include information regarding the distance of invasive carcinoma, carcinoma in situ, or high-grade dysplasia (moderate to severe) from the surgical margin. Tumors with “close” margins also carry an increased risk for local recurrence. The definition of a “close” margin is not standardized as the effective cut-off varies between studies and between anatomic subsites. Commonly used cut points to define close margins are 5 mm in general and 2 mm with respect to glottic larynx. However, values ranging from 3 mm to 7 mm have been used with success, and for glottic tumors as low as 1 mm. Thus, distance of tumor from the nearest margin should be recorded.

Reporting of surgical margins for carcinomas of the minor salivary glands should follow those used for squamous cell carcinoma of the oral cavity. While there is no standard recommendation for the other histologic types of carcinoma encountered, adherence to the recommendations for squamous cell carcinoma is acceptable.

Orientation of Specimen
Complex intact specimens should be examined and oriented with the assistance of attending surgeons. Direct communication between the surgeon and pathologist is a critical component in specimen orientation and proper sectioning. For multipart piecemeal endoscopic resections, specimens should be clearly and
precisely labeled. Parts that are margins should be designated explicitly as such. Whenever possible, the
tissue examination request form should include a drawing of the resected specimen showing the extent of
the tumor and its relation to the anatomic structures of the region. The lines and extent of the resection can
be depicted on preprinted adhesive labels and attached to the surgical pathology request forms.

References

assessment, but not margin status, is strongly predictive of local disease-free and overall survival.

F. Lymph Nodes

Direct Extension of Tumor to Lymph Node
While data are essentially nonexistent for defining N status for lymph nodes involved by tumor via direct
extension for head and neck cancers, the general convention based on other organ sites is to consider
these positive for N categorization and counting purposes. It is recommended however to denote in the
report the number of lymph nodes involved in this manner as it may influence more nuanced management
decisions.

Measurement of Tumor Metastasis
The cross-sectional diameter of the largest lymph node metastasis (not the lymph node itself) is measured
in the gross specimen at the time of macroscopic examination or, if necessary, on the histologic slide at the
time of microscopic examination.1,2

Special Procedures for Lymph Nodes
At the current time, no additional special techniques should be used other than routine histology for the
assessment of nodal metastases. Immunohistochemistry and polymerase chain reaction (PCR) to detect
isolated tumor cells are considered investigational techniques at this time.

Lymph Node Number
For assessment of pN, a selective neck dissection will ordinarily include 10 or more lymph nodes, and a
comprehensive neck dissection (radical or modified radical neck dissection) will ordinarily include 15 or
more lymph nodes. Examination of fewer tumor-free nodes still mandates a pN0 designation.

Regional Lymph Nodes (pN0): Isolated Tumor Cells
Isolated tumor cells (ITCs) are single cells or small clusters of cells not more than 0.2 mm in greatest
dimension. While the generic recommendation is that for lymph nodes with ITCs found by either histologic
examination, immunohistochemistry, or nonmorphologic techniques (e.g., flow cytometry, DNA analysis,
PCR amplification of a specific tumor marker), they should be classified as N0 or M0, respectively. Evidence for the validity of this practice in head and neck squamous cell carcinoma and other histologic subtypes is lacking. In fact, rare studies relevant to head and neck sites indicate that isolated tumor cells may actually be a poor prognosticator in terms of local control.

For purposes of pathologic evaluation, lymph nodes are organized by levels, as shown in Figure 2.

I. Classification of Neck Dissection
 1. Radical neck dissection
 2. Modified radical neck dissection, internal jugular vein and/or sternocleidomastoid muscle spared
 3. Selective neck dissection (SND), as specified by the surgeon (Figure 2), defined by dissection of less than the 5 traditional levels of a radical and modified radical neck dissection. The following dissections are now under this category:
 a. Supraomohyoid neck dissection
 b. Posterolateral neck dissection
 c. Lateral neck dissection
 d. Central compartment neck dissection
 4. Superselective neck dissection (SSND), a relatively new term defined by dissection of the fibrofatty elements of 2 or less levels.
 5. Extended radical neck dissection, as specified by the surgeon

Figure 2. The six sublevels of the neck for describing the location of lymph nodes within levels I, II, and V. Level IA, submental group; level IB, submandibular group; level IIA, upper jugular nodes along the carotid sheath, including the subdigastic group; level IIB, upper jugular nodes in the submuscular recess; level VA, spinal accessory nodes; and level VB, the supracleavicular and transverse cervical nodes. From: Flint PW, et al, eds. Cummings Otolaryngology: Head and Neck Surgery. 5th ed. Philadelphia, PA; Saunders: 2010. Reproduced with permission © Elsevier.

In order for pathologists to properly identify these nodes, they must be familiar with the terminology of the regional lymph node groups and with the relationships of those groups to the regional anatomy. Which
lymph node groups surgeons submit for histopathologic evaluation depends on the type of neck dissection they perform. Therefore, surgeons must supply information on the types of neck dissections that they perform and the details of the local anatomy in the specimens they submit for examination or, in other manners, orient those specimens for pathologists.

If it is not possible to assess the levels of lymph nodes (for instance, when the anatomic landmarks in the excised specimens are not specified), then the lymph node levels may be estimated as follows: level II, upper third of internal jugular (IJ) vein or neck specimen; level III, middle third of IJ vein or neck specimen; level IV, lower third of IJ vein or neck specimen, all anterior to the sternocleidomastoid muscle.

Level I. Submental Group (Sublevel IA)
Lymph nodes within the triangular boundary of the anterior belly of the digastric muscles and the hyoid bone.

Level I. Submandibular Group (Sublevel IB)
Lymph nodes within the boundaries of the anterior and posterior bellies of the digastric muscle and the body of the mandible. The submandibular gland is included in the specimen when the lymph nodes within this triangle are removed.

Level II. Upper Jugular Group (Sublevels IIA and IIB)
Lymph nodes located around the upper third of the internal jugular vein and adjacent spinal accessory nerve extending from the level of the carotid bifurcation (surgical landmark) or hyoid bone (clinical landmark) to the skull base. The posterior boundary is the posterior border of the sternocleidomastoid muscle, and the anterior boundary is the lateral border of the stylohyoid muscle.

Level III. Middle Jugular Group
Lymph nodes located around the middle third of the internal jugular vein extending from the carotid bifurcation superiorly to the omohyoid muscle (surgical landmark), or cricothyroid notch (clinical landmark) inferiorly. The posterior boundary is the posterior border of the sternocleidomastoid muscle, and the anterior boundary is the lateral border of the sternohyoid muscle.

Level IV. Lower Jugular Group
Lymph nodes located around the lower third of the internal jugular vein extending from the omohyoid muscle superiorly to the clavicle inferiorly. The posterior boundary is the posterior border of the sternocleidomastoid muscle, and the anterior boundary is the lateral border of the sternohyoid muscle.

Level V. Posterior Triangle Group (Sublevels VA and VB)
This group comprises predominantly the lymph nodes located along the lower half of the spinal accessory nerve and the transverse cervical artery. The supraclavicular nodes are also included in this group. The posterior boundary of the posterior triangle is the anterior border of the trapezius muscle, the anterior boundary of the posterior triangle is the posterior border of the sternocleidomastoid muscle, and the inferior boundary of the posterior triangle is the clavicle.

Level VI. Anterior (Central) Compartment
Lymph nodes in this compartment include the pre- and paratracheal nodes, precricoid (Delphian) node, and the perithyroidal nodes, including the lymph nodes along the recurrent laryngeal nerve. The superior
boundary is the hyoid bone, the inferior boundary is the suprasternal notch, the lateral boundaries are the common carotid arteries and the posterior boundary by the prevertebral fascia.

Level VII. Superior Mediastinal Lymph Nodes
Metastases at level VII are considered regional lymph node metastases; all other mediastinal lymph node metastases are considered distant metastases. Lymph node groups removed from areas not included in the above levels, eg, scalene, suboccipital, and retropharyngeal, should be identified and reported from all levels separately. Midline nodes are considered ipsilateral nodes.

Extranodal Extension
The status of cervical lymph nodes is the single most important prognostic factor in aerodigestive cancer. All macroscopically negative or equivocal lymph nodes should be submitted in toto. Grossly positive nodes may be partially submitted for microscopic documentation of metastasis, particularly if there is gross extranodal extension. However, generous sampling of the lymph node periphery is recommended if there is no gross extranodal extension to adequately assess microscopic extranodal extension. Reporting of lymph nodes containing metastasis should include whether there is presence or absence of extranodal extension (ENE),\(^9\) which is now part of N staging. This finding consists of extension of metastatic tumor, present within the confines of the lymph node, through the lymph node capsule into the surrounding connective tissue, with or without associated stromal reaction. A distance of extension from the native lymph node capsule is now suggested (but not yet required) with the proposed stratification of ENE into ENEma (>2 mm) and ENEmi (≤2 mm).\(^{10,11,12,13}\) However, pitfalls in the measurement (i.e in larger, matted lymph nodes, in nodes post fine-needle aspiration, and in nodes with near total replacement of lymph node architecture), and the disposition of soft tissue deposits is still not resolved. In general, absence of ENE in a large (>3 cm) lymph node, especially with traversing fibrous bands, should be viewed with skepticism. Soft tissue deposits for lymph node metastases based on limited studies appear to be the equivalent of a positive lymph node with ENE and should be recorded as such.\(^{14}\)

Other Elements
Anatomic compartment location of positive lymph nodes is now a non-core element.

References

G. TNM and Stage Groupings
The protocol recommends the TNM staging system of the American Joint Committee on Cancer and the International Union Against Cancer for nasal cavity and paranasal sinus cancer. Of note in the 7th edition of the AJCC staging of head and neck cancers is the division of T4 lesions into T4a (moderately advanced local disease) and T4b (very advanced local disease), leading to the stratification of stage IV into stage IVA (moderately advanced local/regional disease), stage IVB (very advanced local/regional disease), and stage IVC (distant metastatic disease).

The 8th edition of the AJCC staging of head and neck cancers includes mucosal melanomas; this does not show significant changes from the 7th edition. Approximately two-thirds of mucosal melanomas arise in the sinonasal tract, one quarter are found in the oral cavity and the remainder occur only sporadically in other mucosal sites of the head and neck. Even small cancers behave aggressively with high rates of recurrence and death. To reflect this aggressive behavior, primary cancers limited to the mucosa are considered T3 lesions. Advanced mucosal melanomas are classified as T4a and T4b. The anatomic extent criteria to define moderately advanced (T4a) and very advanced (T4b) disease are given below. The AJCC staging for mucosal melanomas does not provide for the histologic definition of a T3 lesion; as the majority of mucosal melanomas are invasive at presentation, mucosal based melanomas (T3 lesions) include those lesions that involve either the epithelium and/or lamina propria of the involved site. Rare examples of in situ mucosal melanomas occur, but in situ mucosal melanomas are excluded from staging, as they are extremely rare.
New to the 8th edition of the AJCC is the site-specific staging of head and neck soft tissue sarcomas. Despite smaller size, they tend to have disproportionately greater risk of local recurrence compared with extremities. While head and neck soft tissue sarcomas are not generally intrinsically different from their extremity counterparts, their proximity to vital anatomic structures (ie, major nerves, vessels, bone, and skull base). Mortality and morbidity from soft tissue sarcomas is mainly from uncontrolled local disease rather than distant metastatic spread. The traditional 5-cm size cut point separating T1 and T2 extremity soft tissue sarcomas is not meaningful for head and neck sarcomas since the majority are actually less than 5 cm in largest dimension. Staging of soft tissue sarcomas in head and neck has thus been brought in line with size cut-offs for other head and neck cancers. Thus, T1 is used for tumors with a maximum dimension ≤2 cm, T2 for those >2 cm to ≤4 cm, and T3 for those >4 cm. Also in line with other head and neck cancers, T4a and T4b denote very extensive tumors using the same criteria. This staging is not applicable to the following soft tissue sarcoma types/sites: orbital sarcoma, Kaposi sarcoma, cutaneous angiosarcoma, embryonal and alveolar rhabdomyosarcoma, dermatofibrosarcoma protuberans. Grade is still a vital prognosticator for head and neck soft tissue sarcomas, and the FNCLCC system is used (see soft tissue protocols).

Carcinomas of minor salivary glands of the upper aerodigestive tract site, including the nasal cavity and paranasal sinuses, are staged according to schemes corresponding to the anatomic site of occurrence. There is no currently accepted staging for central (primary intraosseous) salivary gland tumors. By AJCC/UICC convention, the designation “T” refers to a primary tumor that has not been previously treated. The symbol “p” refers to the pathologic classification of the TNM, as opposed to the clinical classification, and is based on gross and microscopic examination. pT entails a resection of the primary tumor or biopsy adequate to evaluate the highest pT category, pN entails removal of nodes adequate to validate lymph node metastasis, and pM implies microscopic examination of distant lesions. Clinical classification (cTNM) is usually carried out by the referring physician before treatment during initial evaluation of the patient or when pathologic classification is not possible.

Pathologic staging is usually performed after surgical resection of the primary tumor. Pathologic staging depends on pathologic documentation of the anatomic extent of disease, whether or not the primary tumor has been completely removed. If a biopsied tumor is not resected for any reason (eg, when technically unfeasible) and if the highest T and N categories or the M1 category of the tumor can be confirmed microscopically, the criteria for pathologic classification and staging have been satisfied without total removal of the primary cancer.

Stage Groupings – For Soft Tissue Sarcomas
As this is a new TNM staging, there are currently no stage groupings.

TNM Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y”, “r”, and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis. Reporting of pT, pN, and (when applicable) pM categories is based on information available to the pathologist at the time the report is issued. As per the AJCC (Chapter 1, 8th Ed.) it is the managing physician’s responsibility to establish the final pathologic stage based upon all pertinent information, including but potentially not limited to this pathology report.
The “m” suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

The “y” prefix indicates those cases in which classification is performed during or following initial multimodality therapy (i.e., neoadjuvant chemotherapy, radiation therapy, or both chemotherapy and radiation therapy). The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy (i.e., before initiation of neoadjuvant therapy).

The “r” prefix indicates a recurrent tumor when staged after a documented disease-free interval, and is identified by the “r” prefix: rTNM.

The “a” prefix designates the stage determined at autopsy: aTNM.

References

H. Dysplasia of the Upper Aerodigestive Tract (UADT)
Epithelial dysplasias of the nasal cavity and paranasal sinuses as a precursor lesion for sinonasal carcinomas are less common and less well defined as compared to epithelial dysplasias of the oral cavity and the larynx. Further, unlike dysplastic lesions of the oral cavity and/or the larynx, precursor lesions of the nasal cavity and paranasal sinuses are generally asymptomatic and therefore are not biopsied. Instead, they are identified more often in association with another lesion, such as an invasive carcinoma.

I. Scope of Guidelines
The reporting of nasal cavity and paranasal sinus cancer is facilitated by the provision of a case summary illustrating the features required for comprehensive patient care. However, there are many cases in which
the individual practicalities of applying such a case summary may not be straightforward. Common examples include finding the prescribed number of lymph nodes, trying to determine the levels of the radical neck dissection, and determining if isolated tumor cells in a lymph node represent metastatic disease. Case summaries have evolved to include clinical, radiographic, morphologic, immunohistochemical, and molecular results in an effort to guide clinical management. Adjuvant and neoadjuvant therapy can significantly alter histologic findings, making accurate classification an increasingly complex and demanding task. This protocol tries to remain simple while still incorporating important pathologic features as proposed by the American Joint Committee on Cancer (AJCC) cancer staging manual, the World Health Organization (WHO) classification of tumors, the TNM classification, the American College of Surgeons Commission on Cancer, and the International Union on Cancer (UICC). This protocol is to be used as a guide and resource, an adjunct to diagnosing and managing cancers of the nasal cavity and paranasal sinus in a standardized manner. It should not be used as a substitute for dissection or grossing techniques and does not give histologic parameters to reach the diagnosis. Subjectivity is always a factor, and elements listed are not meant to be arbitrary but are meant to provide uniformity of reporting across all the disciplines that use the information. It is a foundation of practical information that will help to meet the requirements of daily practice to benefit both clinicians and patients alike.